Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Med Vet Entomol ; 2022 Oct 30.
Article in English | MEDLINE | ID: covidwho-2230769

ABSTRACT

Tick-borne disease risk is intrinsically linked to the distribution of tick vector species. To assess risk and anticipate disease emergence, an understanding of tick distribution, host associations, and seasonality is needed. This can be achieved, to some extent, using passive surveillance supported by engagement with the public, animal health, and public health experts. The Tick Surveillance Scheme (TSS) collects data and maps tick distribution across the United Kingdom (UK). Between 2017 and 2020, 3720 tick records were received and 39 tick species were detected. Most records were acquired in the UK, with a subset associated with recent overseas travel. The dominant UK acquired species was Ixodes ricinus (Ixodida: Ixodidae, Linnaeus), the main vector of Lyme borreliosis. Records peaked during May and June, highlighting a key risk period for tick bites. Other key UK species were detected, including Dermacentor reticulatus (Ixodida: Ixodidae, Fabricius) and Haemaphysalis punctata (Ixodida: Ixodidae, Canestrini & Fanzago) as well as several rarer species that may present novel tick-borne disease risk to humans and other animals. Updated tick distribution maps highlight areas in the UK where tick exposure has occurred. There is evidence of increasing human tick exposure over time, including during the COVID-19 pandemic, but seasonal patterns remain unchanged.

2.
Microbiol Spectr ; 10(1): e0228921, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1702730

ABSTRACT

In March 2020, the Rare and Imported Pathogens Laboratory at the UK Health Security Agency (UKHSA) (formerly Public Health England [PHE]) Porton Down, was tasked by the Department of Health and Social Care with setting up a national surveillance laboratory facility to study SARS-CoV-2 antibody responses and population-level sero-surveillance in response to the growing SARS-CoV-2 outbreak. In the following 12 months, the laboratory tested more than 160,000 samples, facilitating a wide range of research and informing UKHSA, DHSC, and UK government policy. Here we describe the implementation and use of the Euroimmun anti-SARS-CoV-2 IgG assay and provide an extended evaluation of its performance. We present a markedly improved overall sensitivity of 91.39% (≥14 days 92.74%, ≥21 days 93.59%) compared to our small-scale early study, and a specificity of 98.56%. In addition, we detail extended characteristics of the Euroimmun assay: intra- and interassay precision, correlation to neutralization, and assay linearity. IMPORTANCE Serology assays have been useful in determining those with previous SARS-CoV-2 infection in a wide range of research and serosurveillance projects. However, assays vary in their sensitivity at detecting SARS-CoV-2 antibodies. Here, we detail an extended evaluation and characterization of the Euroimmun anti-SARS-CoV-2 IgG assay, one that has been widely used within the United Kingdom on over 160,000 samples to date.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/blood , Immunoglobulin G/blood , SARS-CoV-2/immunology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Humans , Public Health , Reagent Kits, Diagnostic , SARS-CoV-2/genetics , Sensitivity and Specificity , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL